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Introduction

Connection with previous chapters:

Chapter 3&4: sufficient conditions under which sample complexity results
do not explicitly depend on the size of the state (or action) space.
Chapter 5: necessary conditions.
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Introduction

Two most basic settings in supervised learning:
agnostic learning (i.e. finding the best classifier or hypothesis in some
class)
learning with linear models (i.e. learning the best linear regressor or the
best linear classifier).

This chapter: focus on lower bounds under these two settings for reinforcement
learning.

finite horizon MDPs
the episodic setting and the generative model setting
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Introduction

Settings in Agnostic Learning:
A hypothesis class H (either finite or infinite)
Each f P H has an associated policy πf : S Ñ A
Each policy is deterministic.

Examples of H:
§ H itself is a class of policies.
§ H is a set of state-action values; a greedy policy πf ps, hq “ argmax afhps, aq

for f .
§ H could be a class of models (i.e. each f P H is an MDP itself); the

optimal policy for f .
Π “ tπf | f P Hu.

The goal of agnostic learning:

max
πPΠ

Es0„µV π ps0q
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Binary Classification

Binary classification as a RL problem:
MDP with H “ 1
|A| “ 2
rps, aq “ 1plabelpsq “ aq

Setting in binary classification:
N samples pxi , yiq

N
i“1

a set H of binary classifiers: h : X Ñ t0, 1u for h P H

pxi , yiq
i.i.d
„ D
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Binary Classification

Define the empirical error and the true error as:

xerrphq “ 1
N

N
ÿ

i“1
1 ph pxiq ‰ yiq , errphq “ EpX ,Y q„D1phpX q ‰ Y q

For a given h P H, Hoeffding’s inequality implies that with probability at least
1´ δ :

| errphq ´xerrphq| ď
c

2
N log 2

δ
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Binary Classification

Hoeffding inequality + union bound give the following result.

Proposition 5.1. (The “Occam’s razor” bound)
Suppose H is finite. Let ph “ arg minhPH yerr phq. With probability at least
1´ δ :

xerrpphq ď min
hPH

errphq `
c

2
N log 2|H|

δ
.

Hence, provided that

N ě
2 log 2|H|

δ

ε2 ,

then with probability at least 1´ δ, we have that:

xerrpphq ď min
hPH

errphq ` ε.

Key observation: the regret has no dependence on the size of S.
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An Occam’s Razor Bound for RL

Consider the episodic setting where we collect N trajectories using a uniform
policy UnifA.

Lemma 5.2. (Unbiased estimation of V π
0 pµqq

Let π be any deterministic policy. We have that:

V π
0 pµq “ |A|H ¨ Eτ„PrUnifA

«

1 pπ ps0q “ a0, . . . , π psH´1q “ aH´1q
H´1
ÿ

h“0
r psh, ahq

ff

where PrUnifA specifies the distribution over trajectories
τ “ ps0, a0, r0, . . . sH´1, aH´1, rH´1q under the policy UnifA.
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Proof of Lemma 5.2.

From a standard importance sampling argument, we have

V π
0 pµq “ Eτ„Prπ

«

H´1
ÿ

h“0
rh

ff

“ Eτ„PrUnifA

«

Prπpτq
PrUnifApτq

H´1
ÿ

h“0
rh

ff

“ |A|H ¨ Eτ„PrUnifA

«

1 pπ ps0q “ a0, . . . , π psH´1q “ aH´1q
H´1
ÿ

h“0
rh

ff
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An Occam’s Razor Bound for RL

Obtain N trajectories under UnifA with n-th sampled trajectory as
`

sn
0 , an

0 , r n
1 , sn

1 , . . . , sn
H´1, an

H´1, r n
H´1

˘

.

Estimate the finite horizon reward of any given policy π via

pV π
0 pµq “

|A|H

N

N
ÿ

n“1
1
`

π psn
0 q “ an

0 , . . . π
`

sn
H´1

˘

“ an
H´1

˘

H´1
ÿ

t“0
r psn

t , an
t q
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An Occam’s Razor Bound for RL
Proposition 5.3. (An “Occam’s razor bound” for RL )
Let δ ě 0. Suppose Π is a finite and suppose we use the aforementioned
estimator, pV π

0 pµq, to estimate the value of every π P Π. Let
pπ “ arg maxπPΠ pV π

0 pµq. We have that with probability at least 1´ δ,

V pπ
0 pµq ě max

πPΠ
V π

0 pµq ´ H|A|H
c

2
N log 2|Π|

δ

Proof:
|A|H1

`

π psn
0 q “ an

0 , . . . π
`

sn
H´1

˘

“ an
H´1

˘
řH´1

t“0 r psn
t , an

t q ď H|A|H ,
Hoeffding + union bound

Hence, provided that
N ě H|A|H 2 logp2|Π|{δq

ε2

then with probability at least 1´ δ, we have that:

V pπ
0 ps0q ě max

πPΠ
V π

0 ps0q ´ ε
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Lower Bounds
Proposition 5.4. (Lower Bound with a Generative Model)
Suppose algorithm A has access to a generative model. There exists a policy
class Π, where |Π| “ |A|H such that if algorithm A returns any policy π (not
necessarily in Π ) such that

V π
0 pµq ě max

πPΠ
V π

0 pµq ´ 0.5.

with probability greater than 1{2, then A must make a number of number calls
N to the generative model where:

N ě c|A|H

(where c is an absolute constant).

Proof Sketch:
Consider a |A|-ary balanced tree, with |A|H states and |A| actions.
States correspond nodes and actions correspond to edges; actions always
move the agent from the root towards a leaf node.
Make only one leaf node rewarding, which is unknown to the algorithm.
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with probability greater than 1{2, then A must make a number of number calls
N to the generative model where:

N ě c|A|H

(where c is an absolute constant).

Proof Sketch:
Consider the policy class to be all |A|H policies.
The theorem immediately follows since the algorithm gains no knowledge
of the rewarding leaf node unless it queries that node.

Chapter 5: Statistical Limits of Generalization Agnostic Learning 17 / 55



Outline

1 Agnostic Learning
Review: Binary Classification
Importance Sampling and a Reduction to Supervised Learning

2 Linear Realizability
Offline Policy Evaluation with Linearly Realizable Values
Linearly Realizable Q˚

Chapter 5: Statistical Limits of Generalization Linear Realizability 18 / 55



Linear Realizability

In supervised learning, two of the most widely studied settings are those of
linear regression and binary classification with halfspaces.
In both settings, we are able to obtain sample complexity results that are
polynomial in the feature dimension.
We now consider the analogue of these assumptions for RL, we may hope
that linearly realizability assumptions may permit a more sample efficient
approach.
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Notation

We start with linear realizability on Qπ and consider the offline policy
evaluation problem.

Data distributions: tµhu
H´1
h“0 where for each h P rHs, µh P ∆ pSh ˆAq

Inputs: tDhu
H´1
h“0 , and for each h P rHs,Dh consists i.i.d. samples of the

form ps, a, r , s 1q P Sh ˆAˆ Rˆ Sh`1 tuples
Policy π : S Ñ ∆pAq
Feature mapping φ : S ˆA Ñ Rd

Goal: output an accurate estimate of the value of π (i.e., V π )
approximately, using the collected datasets tDhu

H´1
h“0 , with as few samples

as possible.
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Linear Realizability Assumption

Assumption 5.5 (Realizable Linear Function Approximation)
For every policy π : S Ñ ∆pAq, there exists θπ0 , . . . θπH´1 P Rd such that for all
ps, aq P S ˆA and h P rHs,

Qπ
h ps, aq “ pθπh q

J
φps, aq.

φps, aq is either hand-crafted or from a pre-trained neural network and
transforms a state-action pair to a d-dimensional embedding
Q-functions can be predicted by linear functions of the features

Chapter 5: Statistical Limits of Generalization Linear Realizability 22 / 55



Linear Realizability Assumption

Assumption 5.6 (Coverage)
For all ps, aq P S ˆA, assume our feature map is bounded such that
}φps, aq}2 ď 1. Furthermore, suppose for each h P rHs, the data distributions
µh satisfies the following:

Eps,aq„µh

“

φps, aqφps, aqJ
‰

“
1
d I.

This distribution satisfies the D-optimal design property introduced before.
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Hardness result

The following theorem shows these assumptions are not sufficient for offline
policy evaluation for long horizon problems.

Theorem 5.7.
Suppose Assumption 5.6 holds. Fix an algorithm that takes as input both a
policy and a feature mapping. There exists a (deterministic) MDP satisfying
Assumption 5.5 such that for any policy π : S Ñ ∆pAq, the algorithm requires
Ω
`

pd{2qH
˘

samples to output the value of π up to constant additive
approximation error with probability at least 0.9.
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Proof of Theorem 5.7

Assume d is even for simplicity
d̂ “ d{2
A hard instance is constructed
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State Space and Action Space

The action space A “ ta1, a2u.
For each h P rHs,Sh contains d̂ ` 1 states s1

h , s2
h , . . . , s d̂

h and s d̂`1
h .
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Transition Operator

For each h P t0, 1, . . . ,H ´ 2u, for each c P t1, 2, . . . , d̂ ` 1u, we have

P ps | sc
h , aq “

$

’

&

’

%

1 s “ s d̂`1
h`1 , a “ a1

1 s “ sc
h`1, a “ a2

0 else

Chapter 5: Statistical Limits of Generalization Linear Realizability 27 / 55



Reward Distributions

Let 0 ď r8 ď d̂´H{2 be a parameter to be determined.
For each ph, cq P t0, 1, . . . ,H´ 2u ˆ rd̂s and a P A, we set rpsc

h , aq “ 0
and rps d̂`1

h , aq “ r8 ¨ pd̂pH´hq{2 ´ d̂pH´h´1q{2q.
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Reward Distributions

For the last level, for each c P rd̂s and a P A, we set

rpsc
H´1, aq “

#

1 with probability p1` r8q{2
´1 with probability p1´ r8q{2

Moreover, for all actions a P A, rps d̂`1
H´1, aq “ r8 ¨ d̂1{2.
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Feature Mapping

Let e1, e2, . . . , ed be a set of orthonormal vectors in Rd .
For each ph, cq P rHs ˆ rd̂s, we set φ psc

h , a1q “ ec , φ psc
h , a2q “ ec`d̂ , and

φ
´

s d̂`1
h , a

¯

“
1

d̂1{2

ÿ

cPd̂

ec

for all a P A.
Chapter 5: Statistical Limits of Generalization Linear Realizability 30 / 55



Verifying Assumption 5.5.
Lemma 5.8
For every policy π : S Ñ ∆pAq, for each h P rHs, for all ps, aq P Sh ˆA, we
have Qπ

h ps, aq “ pθπh q
J
φps, aq for some θπh P Rd .

Proof: We first verify Qπ is linear for the first H ´ 1 levels. For each
ph, cq P t0, 1, . . . ,H ´ 2u ˆ rd̂s, we have

Qπ
h psc

h , a1q “ rpsc
h , a1q`rps d̂`1

h`1 , a1q`rps d̂`1
h`2 , a1q`. . .`rps d̂`1

H´1, a1q “ r8¨d̂pH´h´1q{2.

Moreover, for all a P A,

Qπ
h ps d̂`1

h , aq “ rps d̂`1
h , aq`rps d̂`1

h`1 , a1q`rps d̂`1
h`2 , a1q`. . .`rps d̂`1

H´1, a1q “ r8¨d̂pH´hq{2.

Therefore, if we define

θπh “
d̂
ÿ

c“1
r8 ¨ d̂pH´h´1q{2 ¨ ec `

d̂
ÿ

c“1
Qπ

h psc
h , a2q ¨ ec`d̂ ,

then Qπ
h ps, aq “ pθπh qJφps, aq for all ps, aq P Sh ˆA.
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Verifying Assumption 5.5

Now we verify that the Q-function is linear for the last level. Clearly, for all
c P rd̂s and a P A,

Qπ
H´1psc

H´1, aq “ r8
and

Qπ
H´1ps d̂`1

H´1, aq “ r8 ¨
a

d̂ .

Thus, by defining θπH´1 “
řd

c“1 r8 ¨ ec , we have Qπ
H´1ps, aq “

`

θπH´1
˘J
φps, aq

for all ps, aq P SH´1 ˆA.
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The Data Distributions

For each level h P rHs, the data distribution µh is a uniform distribution over
the set tps1

h , a1q, ps1
h , a2q, ps2

h , a1q, ps2
h , a2q, . . . , ps d̂

h , a1q, ps d̂
h , a2qu. Notice that

ps d̂`1
h , aq is not in the support of µh for all a P A. It can be seen that,

Eps,aq„µh

“

φps, aqφps, aqJ
‰

“
1
d

d
ÿ

c“1
eceJc “

1
d I.
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Proof of Theorem 5.7

It is information-theoretically hard for any algorithm to distinguish the case
r8 “ 0 and r8 “ d̂´H{2.
Fix the initial state to be s d̂`1

0 .
When r8 “ 0, the value of π would be zero.
When r8 “ d̂´H{2, the value of π would be r8 ¨ d̂H{2 “ 1.
Thus, if the algorithm approximates the value of the policy up to an error
of 1{2, then it must distinguish the case that r8 “ 0 and r8 “ d̂´H{2.
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Proof of Theorem 5.7

For the case r8 “ 0 and r8 “ d̂´H{2, tµhu
H´1
h“0 , φ, π and P are the same.

Thus, in order to distinguish the 2 cases, the only way is to query the
reward distribution by using sampling taken from the data distributions.
For all state-action pairs ps, aq in the support of the data distributions of
the first H ´ 1 levels, the reward distributions will be identical.
For the case r8 “ 0 and r8 “ d̂´H{2, for all state-action pairs ps, aq in the
support of the data distribution of the last level,

rps, aq “
"

1 with probability p1` r8q {2
´1 with probability p1´ r8q {2

.
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Proof of Theorem 5.7

Therefore, to distinguish the case that r8 “ 0 and r8 “ d̂´H{2, the agent
needs to distinguish two reward distributions

r p1q “
#

1 with probability 1{2
´1 with probability 1{2

and
r p2q “

"

1 with probability p1` d̂´H{2q{2
´1 with probability p1´ d̂´H{2q{2

.

It is standard argument that in order to distinguish r p1q and r p2q with
probability at least 0.9, any algorithm requires Ωpd̂Hq samples.
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Comments

The key in this construction is the state s d̂`1
h in each level.

In each level, s d̂`1
h amplifies the Q-values by a d̂1{2 factor.

After all the H levels, the value will be amplified by a d̂H{2 factor.
Since s d̂`1

h is not in the support of the data distribution, the only way for
the agent to estimate the value of the policy is to estimate the expected
reward value in the last level.
This construction forces the estimation error of the last level to be
amplified exponentially and thus implies an exponential lower bound.
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Linearly Realizable Q˚

We consider the problem of learning with only a linearly realizability assumption
on Q‹ (along with access to either a generative model or sampling access in the
episodic setting).
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Linear Realizability Assumption

Assumption 5.9 (Linear Q˚ Realizability)
For all h P rHs, assume there exists θ˚h P Rd such that for all ps, aq P S ˆA,

Q˚h ps, aq “ θ˚h ¨ φps, aq.

The hope is that this assumption may permit a sample complexity that is
polynomial in d and H, with no explicit |S| or |A| dependence.
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Linear Realizability Assumption

Assumption 5.10 (Constant Sub-optimality Gap)
For any state s P S, a P A, the suboptimality gap is defined as
∆hps, aq :“ V ˚

h psq ´ Q˚h ps, aq. We assume that

min
hPrHs,sPS,aPA

t∆hps, aq : ∆hps, aq ą 0u ě ∆min.

The hope is that with a ”large gap”, the identification of the optimal
policy itself (as opposed to just estimating its value accurately) may be
statistically easier, thus making the problem easier.
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Hardness results

Theorem 5.11. (Linear Q‹; Generative Model Case)
Consider any algorithm A which has access to a generative model and which
takes as input the feature mapping φ : S ˆA Ñ Rd . There exists an MDP
with a feature mapping φ satisfying Assumption 5.9 and where the size of the
action space is |A| “ c1

P

min
 

d1{4,H1{2(T such that if A (when given φ as
input) finds a policy π such that

Es1„µV π ps1q ě Es1„µV ˚ ps1q ´ 0.05

with probability 0.1, then A requires min
 

2c2d , 2c2H( samples (c1 and c2 are
absolute constants).

The implications of the above show that the linear Q˚ assumption, alone,
is not sufficient for sample efficient RL, even with access to a generative
model.
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Hardness results

Theorem 5.12. (Linear Q‹ Realizability + Gap; Episodic Setting)
Consider any algorithm A which has access to the episodic sampling model and
which takes as input the feature mapping φ : S ˆA Ñ Rd . There exists an
MDP with a feature mapping φ satisfying Assumption 5.9 and Assumption 5.10
(where ∆min is an absolute constant) such that if A (using φ as input) finds a
policy π such that

Es1„µV π ps1q ě Es1„µV ˚ ps1q ´ 0.05

with probability 0.1, then A requires min
 

2cd , 2cH( samples (where c is an
absolute constant).
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Proof of Theorem 5.12

We prove Theorem 5.12 by providing the construction of a hard family of
MDPs where Q˚ is linearly realizable and has constant suboptimality gap and
where it takes exponential samples to learn a near-optimal policy.

Let m be an integer to be determined.
The state space is t1, ¨ ¨ ¨ , m̄, f u. The special state f is called the terminal
state.
The action space is A “ t1, 2, . . . ,mu.
Each MDP in this family is specified by an index a˚ P t1, 2, . . . ,mu and
denoted by Ma˚ .
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Proof of Theorem 5.12

We will use the Johnson-Lindenstrauss lemma:

Lemma 5.13 (Johnson-Lindenstrauss)
For any α ą 0, if m ď exp

` 1
8α

2d 1
˘

, there exists m unit vectors tv1, ¨ ¨ ¨ , vmu in
Rd 1 such that @i , j P t1, 2, . . . ,mu such that i ‰ j , |xvi , vjy| ď α.

Set α “ 1
6 and m “

X

exp
` 1

8α
2d
˘\

.
By Lemma 5.13, we can find such a set of d-dimensional unit vectors
tv1, ¨ ¨ ¨ , vmu.
We use vi and vpiq interchangeably.
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Features

The feature map, which maps state-action pairs to d ` 1 dimensional vectors,
is defined as follows.

Here 0 is the zero vector in Rd . Note that the feature map is independent of
a˚ and is shared across the MDP family.
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Rewards

For h P t0, . . . ,H ´ 2u, the rewards are defined as

For h “ H ´ 1, rH´1ps, aq :“ xφps, aq, p1, v pa˚qqy for every state-action pair.
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Transitions

The initial state distribution µ is set as a uniform distribution over t1, ¨ ¨ ¨ , m̄u.
The transition probabilities are set as follows.

After taking action a2, the next state is either a2 or f .
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Verifying Assumption 5.9.

Lemma 5.14. (Linear realizability)
In the MDP Ma˚ ,@h P rHs, for any state-action pair ps, aq,Q˚h ps, aq “
xφps, aq, θ˚y with θ˚ “ p1, v pa˚qq.

Proof: We first verify the statement for the terminal state f . Observe
that at the terminal state f , the next state is always f and the reward is either
0 (if action 1 is chosen) or -1 (if an action other than 1 is chosen). Hence, we
have

Q˚h pf , aq “
#

0 a “ 1
´1 a ‰ 1

and
V ˚

h pf q “ 0

This implies Q˚h pf , ¨q “ xφpf , ¨q, p1, v pa˚qqy.
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Verifying Assumption 5.9.

Proof: We now verify realizability for other states via induction on
h “ H ´ 1, ¨ ¨ ¨ , 0. The induction hypothesis is that for all
a1, a2 P t1, 2, . . . ,mu, we have

Q˚h pa1, a2q “

#

pxv pa1q , v pa2qy ` 2αq ¨ xv pa2q , v pa˚qy a1 ‰ a2
3
4α a1 “ a2

(1)

and

V ˚
h pa1q “

"

xv pa1q , v pa˚qy ` 2α a1 ‰ a˚
3
4α a1 “ a˚ . (2)

Note that (1) implies that realizability is satisfied. In the remaining part of the
proof we verify Eq. p1q and p2q.
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Verifying Assumption 5.9.
Proof: When h “ H ´ 1, p1q holds by the definition of rewards. Next, note
that for all h P rHs, p2q follows from (1). This is because for all a1 ‰ a˚, for all
a2 R ta1, a˚u.

Q˚h pa1, a2q “ pxv pa1q , v pa2qy ` 2αq ¨ xv pa2q , v pa˚qy ď 3α2

Moreover, for all a1 ‰ a˚,

Q˚h pa1, a1q “
3
4α ă α

Furthermore, for all a1 ‰ a˚,

Q˚h pa1, a˚q “ xv pa1q , v pa˚qy ` 2α ě α ą 3α2

In other words, p1q implies that a˚ is always the optimal action for all state a1
with a1 ‰ a˚. Now, for state a˚, for all a ‰ a˚, we have

Q˚h
`

a˚, a
˘

“ pxv pa˚q , vpaqy ` 2αq¨xv pa˚q , vpaqy ď 3α2 ă
3
4α “ Q˚h

`

a˚, a˚
˘

.

Hence, (1) implies that a˚ is always the optimal action for all states ā
with a P t1, 2, . . . ,mu.
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Verifying Assumption 5.9.

Proof: Thus, it remains to show that p1q holds for h assuming p2q holds
for h ` 1. Here we only consider the case that a2 ‰ a1 and a2 ‰ a˚, since
otherwise Pr rf | a1, a2s “ 1 and thus p1q holds by the definition of the rewards
and the fact that V ˚

h pf q “ 0. When a2 R ta1, a˚u, we have

This is exactly p1q for h. Hence both p1q and p2q hold for all h P rHs.
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Verifying Assumption 5.10.

Lemma 5.15. (Constant Gap)
Assumption 5.10 is satisfied with ∆min “ 1{24.

Proof: From Eq. p1q and p2q, it is easy to see that at state a1 ‰ a˚, for
a2 ‰ a˚, the suboptimality gap is

∆h pa1, a2q :“ V ˚
h pa1q ´ Q˚h pa1, a2q ě α´max

"

3α2,
3
4α

*

“
1

24 .

Moreover, at state a˚, for a ‰ a˚, the suboptimality gap is

∆h
`

a˚, a
˘

:“ V ˚
h
`

a˚
˘

´ Q˚h
`

a˚, a
˘

ě
3
4α´ 3α2 “

1
24

Finally, for the terminal state f , the suboptimality gap is obviously 1 .
Therefore ∆min ě

1
24 for all MDPs under consideration.
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Proof Sketch of Theorem 5.12
The feature map of Ma˚ does not depend on a˚.
For h ă H ´ 1 and a2 ‰ a˚, the reward rh pa1, a2q contains no information
about a˚.
The transition probabilities are also independent of a˚, unless the action
a˚ is taken.
The reward at state f is always 0 .
Thus, to receive information about a˚, the agent either needs to
take the action a˚, or be at a non-game-over state at the final time
step.
However, note that the probability of remaining at a non-terminal state at
the next layer is at most

sup
a1‰a2

xv pa1q , v pa2qy ` 2α ď 3α ď 3
4 .

Thus, for any algorithm, Pr rsH´1 ‰ f s ď
` 3

4
˘H , which is exponentially

small.
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Proof Sketch of Theorem 5.12

In other words, any algorithm that does not know a˚ either needs to ”be
lucky” so that sH´1 ‰ f , or needs to take a˚ ”by accident”.
Since the number of actions is m “ 2Θpdq, either event cannot happen
with constant probability unless the number of episodes is exponential in
mintd ,Hu.
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